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Abstract  

The  northern  Gulf  of  Mexico ( GoM)  spans  five  U.S.  states  and  encompasses  estuaries  that  vary  

greatly  in s ize,  shape,  upstream  river  input,  eutrophication s tatus,  and b iotic  communities.  Given  
the  variability  among  these  estuaries,  assessing  their  biological  condition r elative  to  
anthropogenic  stressors  is  challenging,  but  important  to r egional  fisheries  management  and  
habitat  conservation in itiatives.  Here,  a  hierarchical  generalized l inear  modeling  approach w as  
developed t o p redict  species  presence  in b ottom  trawl  samples,  using  data  from  33 e stuaries  over  
a  nineteen-year  study  period.  This  is  the  first  GoM  estuary  assessment  to l everage  Gulf-wide  
trawl  data  to d evelop s pecies-level  indicators  and  a  quantitative  index  of  estuary  disturbance.  

After  controlling  for  sources  of  variability  at  the  sampling  event,  estuary,  state,  and s ampling  
program  levels,  our  approach s creened f or  statistically  significant  relationships  between  
watershed-level  anthropogenic  stressors  and  fish a nd i nvertebrate  species  presence.  Modeling  
results  indicate  species  level  indicators  with s ensitivities  to l andscape  stressor  gradients.  The  
most  influential  stressors  include  total  anthropogenic  land u se,  crop l and u se,  and t he  number  of  
toxic  release  sites  in u pstream  watersheds,  as  well  as  agriculture  in t he  shoreline  buffer,  each o f  
which w as  significantly  related t o b etween 2 1%  and 3 9%  of  the  57 s pecies  studied.  Averaging  
the  effects  of  these  influential  stressors  across  species,  we  develop a   quantitative  estuary  stress  
index  that  can b e  compared a gainst  benchmark  conditions.  In  general,  disturbance  levels  were  
greatest  in e stuaries  west  of  the  Mississippi  delta  and in h  ighly  developed  estuaries  in s outhwest  
Florida.  Estuaries  from t he  Florida  panhandle  to t he  eastern M ississippi  delta  had l ess  
anthropogenic  stress.   
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53 1.  Introduction  

Fishing  is  central  to t he  social  and e conomic  well-being  of  the  northern  Gulf  of  Mexico ( GoM)  

region o f  the  United  States  (U.S.),  making  sustainable  management  of  fisheries  a  regional  
priority.  The  seafood i ndustry  in t he  Gulf  States  of  Florida,  Alabama,  Mississippi,  Louisiana,  and  
Texas  (FL,  AL,  MS,  LA,  TX)  contributed $ 7.9 B   to th e  2012 U .S.  Gross  Domestic  Product  
(GDP)  and p rovided 1 60,000 jo bs  to c oastal  residents  (NMFS  2014),  while  recreational  fisheries  
provided a n a dditional  $7.8 B   to th e  regional  GDP  in 2 012 a s  a  result  of  the  activities  of  3.1  M  
anglers  (NMFS  2014).  Some  of  the  most  valuable  species  in b oth th e  commercial  and  
recreational  fisheries,  including  shrimps  (Family:  Penaeidae),  Gulf  Menhaden ( Brevoortia  

patronus),  and S potted  Seatrout  (Cynoscion n ebulosus),  have  strong  affiliations  to e stuary  
habitats  for  a  portion o f  their  life  cycles.  The  estuaries  of  the  GoM  are  subject  to d isturbance  
from a   wide  range  of  anthropogenic  activities,  potentially  putting  commercial  and r ecreational  
fisheries  at  risk.  Understanding  the  spatial  patterns  and c auses  of  degradation to e  stuary  fisheries  
and f ish h abitats  are  important  science  priorities.  

Environmental  degradation i n s ome  areas  of  the  GoM  is  already  advanced  due  to a nthropogenic  
disturbances  that  include  hydrologic  alteration,  eutrophication,  toxic  pollution,  and o verfishing  
(NRC,  2000;  Rabalais  et  al.,  2002;  Yáñez-Arancibia  and D ay,  2004,  Howarth a nd M arino,  2006).  
Altered p atterns  of  freshwater  inflow  to G oM  estuaries  have  resulted f rom u pstream d amming,  
river  channelization,  and  water  abstraction ( Harwell,  1997;  Flannery  et  al.,  2002),  which h ave  led  
to c hanged s alinity  regimes,  reduced d ilution o f  estuary  pollutants,  and l and  subsidence  (Day  et  
al.,  2000).  Excessive  runoff  of  nitrogen  and p hosphorus  from  fertilizers  and  urban a ctivities  in  
catchments  has  caused  eutrophication,  and i n s evere  cases,  low  dissolved  oxygen  and f ish  kills  
(Rabalais  et  al.,  2002;  Diaz  and R osenberg,  2008;  2011).  Toxic  chemicals  associated w ith  
industry,  urban d evelopment,  and  agriculture  are  strongly  concentrated in s  ome  areas  and h ave  
been s hown to n  egatively  affect  benthic  organisms  in th e  GoM  (Brown e t  al.,  2000).  Some  of  
these  toxic  releases  originate  from  the  petroleum  industry,  which i s  especially  concentrated in   
coastal  areas  of  LA  and e astern T X  (Adams  et  al.,  2004).  Estuarine  fish a nd  invertebrate  species  
integrate  habitat  conditions  differently  over  both t ime  and s pace  and c an b e  helpful  as  biological  
indicators  of  larger  trends  in e cosystem  degradation ( e.g.,  Macauley  et  al.  1999).  

A  central  challenge  in b iological  assessment  is  to d istinguish t he  responses  of  species  to  
anthropogenic  stress  from th e  high l evels  of  natural  background v ariation  common to e  cological  
systems  (Hawkins  et  al.,  2010).  This  challenge  is  particularly  acute  in G oM  estuaries  where  the  
daily  and s easonal  variability  in t emperature,  salinity,  and d issolved o xygen  leads  to a nnual  
variation i n b iological  community  composition a nd s tructure  (Peterson a nd  Ross,  1991;  Akin e t  
al.,  2003;  Baltz  et  al.,  1993;  Gelwick  et  al.,  2001;  Granados-Dieseldorff  and B altz,  2008).  While  
high n atural  environmental  variability  can b e  stressful  to m any  species,  anthropogenic  stress  to  
estuaries  has  been s hown t o r esult  in d ominance  by  opportunistic  habitat  or  trophic  generalists,  to  
the  detriment  of  rare  or  specialized ta xa  (Felley,  1987;  Chesney  and B altz,  2001;  Lewis  et  al.,  
2011).  Such  findings  suggest  that  some  species  may  be  particularly  sensitive  to h uman i mpacts,  
including  even e stuarine  species  adapted to h  igh d egrees  of  natural  environmental  variation.   
Many  estuarine  studies  conducted to d  ate  have  focused o n r esponses  by  groups  of  species  with  
similar  life  history  or  functional  characteristics  (i.e.  community  metrics;  Macauley  et  al.,  1999;  
Summers,  2001;  Hughes  et  al.,  2002;  Meng e t  al.,  2002;  Jordan e t  al.,  2010;  Cabral  et  al.,  2012).   
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96 However,  evidence  from f reshwater  systems  suggests  that  community  metrics  may  obscure  
biological  responses  to s tressor  gradients  that  can  be  detected in s  pecies-specific  indicators  
(Baker  and  King,  2010;  King  and B aker,  2010).  Further,  individual  species  indicators  may  also  
allow  for  more  direct  linkages  to m anagement  by  focusing  on p opulations  of  economically  
valuable  taxa  or  taxa  with h igh c onservation v alue.  

Multiple  approaches  have  been u sed t o  account  for  natural  background v ariation in b  iological  
assessment.  One  approach i s  to d efine  different  biological  indicators  within d iscrete  salinity  
zones  (Coates  et  al.,  2007;  Briene  et  al.,  2010;  Cabral  et  al.,  2012)  or  different  types  of  estuaries  
(Harrison a nd  Whitfield,  2006).  Another  approach  is  to s creen f or  indicators  that  are  sensitive  to  
anthropogenic  stress,  but  insensitive  to n atural  gradients  (Jordan e t  al.,  2010).  Moreover,  models  
can b e  developed  and u sed t o a ccount  for  the  effects  of  natural  variables  before  testing  for  
indicator  sensitivity  (Engle  et  al.,  1994).   Multivariable  models  (e.g.  multiple  linear  regression)  
have  proven u seful  for  predicting  species  or  community  responses  to b oth n atural  and  
anthropogenic  gradients  (Lewis  et  al.,  2007;  Courrat  et  al.,  2009;  Delpech e t  al.,  2010).  By  
controlling  for  natural  variation w ith m odel  coefficients,  biological  responses  to o ne  or  multiple  
ecological  stressors  can b e  predicted  at  different  stressor  levels  which c an b e  particularly  helpful  
for  judging  whether  current  conditions  differ  from  a  benchmark  or  reference  condition ( Hawkins  
et  al.,  2010).  Without  benchmarks,  little  context  exists  for  interpreting  the  measured v alue  of  an  
ecological  resource,  which c an  vary  substantially  with n atural  differences  among  sites.  
 
Efforts  to c lassify  the  ecological  status  of  estuaries  have  occurred  globally  over  the  past  two  
decades.  In t he  U.S.,  studies  have  focused o n c haracterizing e stuaries  based  on t heir  water  
quality,  susceptibility  to  pollution b ased o n  geomorphologic  and f low  conditions,  and w atershed  
stressors  such a s  land  cover  and p oint  sources  of  pollution ( Bricker  et  al.,  2008;  Greene  et  al.,  
2015).  Some  studies  have  classified U .S.  estuaries  based o n t heir  fish p opulations  (Gleason e t  al.,  
2011;  Hughes  et  al.,  2014),  but  only  a  few  nekton s pecies  in l imited r egions  have  been  modeled  
to c onnect  fish p resence  to e stuary  anthropogenic  stress  (Toft  et  al.,  2015).  In E urope,  regional  
and c ountry  specific  multi-metric  indices  have  been  developed b ased o n b iological  communities  
to c alculate  overall  ecological  health ( Breine  et  al.,  2007;  Coates  et  al.,  2007;  Delpech e t  al.,  
2010;  Cabral  et  al.,  2012;  Harrison a nd  Kelly,  2013),  but  limited p rogress  has  been  made  toward  
showing  strong  relationships  between t hese  indices  and a nthropogenic  stressors  (Pasquad e t  al.,  
2013).  Such  analyses  have  been  complicated b y  the  additional  effort  required to   “intercalibrate”  
the  results  from d ifferent  studies  in o rder  to m ake  intra-continental  comparisons.  In p articular,  
setting  regional  benchmark c onditions  and c omparing  studies  with d ifferent  sampling  protocols  
or  metrics  is  an o ngoing c hallenge  not  easily  resolved ( Poikane  et  al.,  2014).  Though  much  
progress  has  been  made  in s ampling  and q uantifying  estuary  ecological  status,  further  efforts  and  
techniques  are  needed t o  model  species  and b iological  communities  across  varying  natural  
settings,  link  biological  conditions  to w atershed s tressors,  and s et  benchmark c onditions.  
 
Hierarchical  (or  ‘multi-level’)  modeling  provides  a  potential  methodology f or  linking  watershed  
stressors  and e stuary  biological  condition,  accounting  for  discrepancies  among  sampling  
programs  and n atural  variability  among  estuaries.  Hierarchical  modeling  accounts  for  variability  
among  different  groups  of  data  at  different  spatial  or  organizational  levels  using  regression  
coefficients  (i.e.,  ‘random  effects’)  that  vary  by  group a s  members  of  a  common s tatistical  
hyperdistribution ( Gelman a nd H ill,  2006).  This  extension o f  classical  regression m odeling  
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141 accounts  for  intra-class  correlation a mong  data  from c ommon  groups  (i.e.,  estuaries,  states,  trawl  
programs),  allowing  for  statistically  valid h ypothesis  testing  of  group-level  predictor  variables  
(Gelman e t  al.,  2014).  Thus,  for  grouped d ata,  hierarchical  modeling  is  often a n i mprovement  
over  classical  regression m odeling  in t erms  of  both p redictive  performance  and c ausal  inference  
(Wikle,  2003a;  Cressie  et  al.,  2009;  Qian e t  al.,  2010),  and th ese  models  have  been u sed  
extensively  to s tudy  environmental  and e cological  systems  (Wikle  et  al.,  1998;  Wikle,  2003b;  

Clark a nd G elfand,  2006;  Bolker  et  al.,  2009;  Kashuba  et  al.,  2010;  Cuffney  et  al.,  2011).  In t his  
study,  hierarchical  modeling  is  instrumental  in c ontrolling  for  the  variability  of  species  presence  
across  different  estuaries,  states,  and m onitoring  programs.   

The  aim o f  the  current  study  is  to id entify  key  sources  of  watershed s tress  (i.e.,  stressors)  that  are  
related to s  pecies  presence  in G oM  estuaries,  and to a  ggregate  these  relationships  to a ssess  the  
relative  intensity  of  watershed s tress  in e ach e stuary  using  hierarchical  generalized l inear  
modeling.  This  new  approach to a  ssessing  the  biological  health o f  estuaries  allows  us  to:  (1)  
combine  nearly  70,000 t rawl  samples  collected b y  separate  research e fforts;  (2)  control  for  
natural  environmental  variation w hile  identifying s tatistically  significant  estuary-level  stressors  
affecting  the  presence  of  fish a nd in vertebrate  species;  and ( 3)  create  an  estuary  stress  index  that  
quantifies  the  amount  of  anthropogenic  stress  affecting  GoM  estuaries  as  compared t o  
benchmark c onditions  in t he  region.  
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159 2.  Methods  

2.1  Study  Area  

Our  study  spanned 3 3 e stuaries  across  the  five  U.S.  GoM  states  (Fig.  1).  Estuary  habitats  were  
classified t o in clude  open  water  and  wetland c lasses  from  the  Coastal  Change  Analysis  Program  
(C-CAP)  dataset  (NOAA,  2006)  and t he  National  Wetlands  Inventory  (NWI;  USFWS,  2012).  To  
summarize  landscape  influence  on  each  estuary,  it  was  necessary  to d efine  their  spatial  extents  
and t ributary  influences.  The  seaward e xtent  of  estuaries  was  limited to t  he  4-m  depth  contour  
based o n a n e xamination o f  plots  of  salinity-at-depth.  The  salinities  at  the  defined s eaward d epth  
did n ot  generally  drop b elow  32 p ractical  salinity  units  (psu).  The  landward e xtent  of  the  
estuaries  was  drawn to i  nclude  open w ater  areas  as  well  as  estuarine  emergent  wetlands  from  C-
CAP.  Atchafalaya  Bay,  LA  was  excluded b ecause  it  is  a  statistical  outlier  in t erms  of  its  
freshwater  inflow  and n itrogen l oad ( from  the  greater  Mississippi  River  Basin),  and t hus  difficult  
to c ompare  to o ther  GoM  estuaries.  Additional  coastal  areas  were  omitted f rom  this  analysis  
because  they  did n ot  meet  the  conventional  definition o f  an e stuary  (i.e.,  a  partially  enclosed  
coastal  body  of  brackish  water  with o ne  or  more  rivers  or  streams  flowing  into it   and w ith a   free  
connection t o th e  open s ea;  Pritchard,  1967)  or  they  lacked s ufficient  watershed l evel  stressor  
data  needed f or  analysis.  One  estuary,  Rookery  Bay,  was  included i n t he  final  analysis  because  it  
had w atershed l evel  stressor  data  even th ough it   did n ot  possess  any  biological  data  (i.e.,  trawl  
data).   
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Fig. 1 Basins for the 33 estuaries and estuarine drainage areas (EDAs), representing the most 
downstream portion (HUC 8) of each basin, are delineated using gray lines while state lines are 
shown in black. For some smaller drainage basins, the total basin and EDA are equivalent (no 

gray line within the colored basin). The GoM includes five states: Texas (TX), Louisiana (LA), 
Mississippi (MS), Alabama (AL), and Florida (FL). 

Data were collected at two different spatio-temporal scales. Throughout this paper, “event-level 
data” refer to the data recorded at the specific times and locations of individual bottom trawl 
samples. “Estuary-level data” refer to average conditions within estuaries or in the watersheds 
connecting to an estuary. Physical features include both event-level data (temperature, salinity 
and distance-to-shore) and estuary-level data such as estuary volume, estuary area, percent of 
estuary open to the sea, and average freshwater inflows. All anthropogenic stressors included in 
this analysis, such as toxic releases and land covers, are estuary-level data. 

2.2 Trawl Events 

Sampling events, performed by state and federal programs, consisted of towing otter trawls 
through estuary bottom waters for set distances or periods of time to determine the presence and 
abundance of different fish and invertebrates living in those areas. This study analyzed 69,570 
bottom trawl samples from 1991 through 2009 (Table 1) gathered by the five GoM states (FL, 
AL, MS, LA, TX) and two federal research programs run by the U.S. Environmental Protection 
Agency (EPA): the Environmental Monitoring and Assessment Program (EMAP) and National 
Coastal Assessment (NCA). Sampling gears and protocols varied across programs (Table 1). For 
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 Program 
  # of 

 trawls 

  # of 
 species 
 recorded 

Mesh  
 size 
 (mm) 

 Trawl 
 effort 

 (ha) 

 Time 
 period 

FL   9,580  213  3.2  5.6  1991-2005 
AL   2,620  102  9.5  4.2  1991-2006 

 MS  708  25  6.4  4.2  1991-2005 
LA   23,580  209  6.4  3.2  1991-2007 
TX   31,870  488  38  2.8  1991-2009 

EMAP   418  157  25  5.0  1991-1994 
NCA   795  244  38  5.0  2000-2004 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

200 instance,  programs  used  nets  with v arying d imensions  and c od-end  mesh s izes,  and to wed f or  
different  distances  and  at  different  speeds.  Therefore,  a  measure  of  effort  (hectares  (ha)  sampled)  
was  derived  for  each s ampling  event,  and th e  cod-end m esh s ize  was  recorded f or  each s ampling  
program.  Variation th at  existed in s  ampling  protocols  was  accounted f or  by  a  hierarchical  
grouping  of  trawl  data  that  allowed th e  model  intercept  to v ary  by  sampling p rogram  (see  section  
2.6).   

201 

202 

203 

204 

205 

206 Table  1  Summary  of  fish  and in vertebrate  trawl  data  for                          
Florida  (FL),  Alabama  (AL),  Mississippi  (MS),                                        
Louisiana  (LA),  Texas  (TX),  Environmental  Monitoring                          

and A ssessment  Program ( EMAP),  and N ational  Coastal                         
Assessment  (NCA).                                                                                    

207 

208 
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212 For  each b ottom  trawl  event,  fish a nd i nvertebrate  species  were  identified  and e numerated  along  
with b asic  environmental  data  such a s  location,  temperature,  and s alinity.  Some  trawl  events  
yielded n o d ata  because  no s pecies  were  collected,  while  most  events  contained r ecords  for  
multiple  species.  Data  on  over  500,000 f ish a nd in vertebrate  individuals  collected f rom  the  trawl  

events  were  used in t  his  study,  but  only  species  that  were  sampled b y  at  least  six  of  the  seven  
monitoring  programs  and  caught  in a   minimum  of  120 t rawls  were  used f or  final  results  (see  
section 2 .7).  This  limited  our  study  to 5 7 f ish a nd  invertebrate  species  (Table  2)  whose  ranges  
were  widely  distributed t hroughout  the  GoM  and  had s ufficient  data  to a dequately  parameterize  
logistic  models  (Peduzzi  et  al.,  1996;  Allison,  2012).   

2.3 E vent-level  Variables  

Predictor  variables  were  compiled  at  both t he  event  and e stuary  levels.  Preliminary  analyses  
suggested th at  temperature,  salinity  and d istance-to-shore  were  important  event-level  variables  
for  the  majority  of  species  while  average  estuary  depth w as  not.  Temperature  and s alinity  can  
determine  important  characteristics  of  fish h abitat  due  to th eir  effect  on p rimary  production a nd  
fish m etabolism  (Fry,  1971;  Brett  and G roves,  1979),  while  distance-to-shore  can  act  as  a  proxy  
for  near-shore  habitats  and c hanges  in w ater  depth.  Reliable  event-level  depth e stimates  were  
missing  for  a  substantial  portion o f  the  trawl  data  and a s  such th is  variable  had t o b e  excluded  
from  the  analysis,  despite  its  obvious  importance  for  fish h abitat  selection a nd tr awl  catch  
efficiency.  Temperature,  salinity,  and d istance-to-shore  exhibited s ubstantial  variability  as  seen  
in T able  3.  The  variations  in t he  event-level  predictors  reflect,  to a   large  extent,  the  natural  
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  % pres.    % pres. 
   Common/Scientific species name    Common/Scientific species name 

 T E   T  E 

   Atl. Croaker/Micropogonias undulatus  52  85    Southern Flounder/Paralichthys lethostigma  5  73 

   Bay Anchovy/Anchoa mitchilli  49  85    Striped Mullet/Mugil cephalus  5  61 

    Blue Crab /Callinectes sapidus  42  94    Black Drum/Pogonias cromis  5  64 

  Spot/Leiostomus xanthurus  39  82    Striped Anchovy/Anchoa hepsetus  4  76 

   White Shrimp/Litopenaeus setiferus  35  70    Silver Jenny/Eucinostomus gula  3  82 

   Brown Shrimp/Farfantepenaeus aztecus  34  70   Lookdown/Selene vomer  3  73 

   Hardhead Catfish/Ariopsis felis  30  85    Star Drum/Stellifer lanceolatus  3  52 

   Sand Seatrout/Cynoscion arenarius  28  85    Gulf Toadfish/Opsanus beta  3  76 

  Pinfish/Lagodon rhomboides  27  94    Lined Sole/Achirus lineatus  3  73 

   Gulf Menhaden/Brevoortia patronus  20  79    Atl. Moonfish/Selene setapinnis  3  55 

   Silver Perch/Bairdiella chrysoura  20  82    Chain Pipefish/Syngnathus lousianae  2  76 

   Pink Shrimp/Farfantepenaeus duorarum  13  85    Crevalle Jack/Caranx hippos  2  52 

   Least Puffer/Sphoeroides parvus  12  70    Silver Seatrout/Cynoscion nothus  2  70 

   Bay Whiff/Citharichthys spilopterus  11  67    Scaled Sardine/Harengula jaguana  2  55 

   Gafftopsail Catfish/Bagre marinus  10  79    Blue Catfish/Ictalurus furcatus  2  67 

   Black Tonguefish/Symphurus plagiusa 9   76    Gizzard Shad/Dorosoma cepedianum  2  64 

   Fringed Flounder/Etropus crossotus 9   79    Spotfin Mojarra/Eucinostomus argenteus  2  52 

   Atl. stingray/Dasyatis sabina 8   73   Gulf Pipefish/Syngnathus scovelli   2  79 

   Inshore Lizardfish/Synodus foetens 8   97    Naked Goby/Gobiosoma bosc  1  73 

  Hog Choker/Trinectes maculatus  7   85    Lane Snapper/Lutjanus synagris  1  58 

   Bighead Searobin/Prionotus tribulus 7   85    Red Drum/Sciaenops ocellatus  1  64 

   Atl. Bumper/Chloroscombrus chrysurus 7   76     Atl. Threadfin Herring/Opisthonema oglinum  1  55 

   Atl. Spadefish/Chetodipterus faber 7   73    White Mullet/Mugil curema  1  48 

  Ground Mullet/Menticirrhus americanus  7   82   Bluntnose Jack/Hemicaranx amblyrhynchus   0.9  58 

  Pigfish/Orthopristis chrysoptera 7   82    Spanish Mackerel/Scomberomorus maculatus  0.8  61 

   Gulf Butterfish/Peprilus burti 6   70   Ladyfish/Elops saurus  0.8  64 

   Spotted Seatrout/Cynoscion nebulosus 6   79    Lined Seahorse/Hippocampus erectus  0.6  48 

   Threadfin Shad/Dorosama petenense 6   61    Sea Bass/Centropristis philadelphica  0.3  52 

   Atl. Cutlassfish/Trichiurus lepturus 5   85         

  

232 heterogeneity  of  estuarine  conditions  across  the  study  area.  While  hydrologic  alteration i n th e  
GoM  can a ffect  freshwater  inflows  and  estuary  salinity  levels  (Orlando e t  al.,  1993;  Day  et  al.,  
2000),  these  large-scale  anthropogenic  modifications  were  not  considered d irectly  in t his  study  
because  they  could n ot  be  explicitly  quantified,  though t hey  are  likely  related t o s ome  of  the  
available  watershed s tressor  variables.  
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238 Table  2  Modeled f ish a nd in vertebrate  species  along  with o verall  percent  presence  in t rawl  
samples  (T)  and in e  stuaries  (E).  239 
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Temperature Salinity Distance-to-
(ºC) (psu) shore (km) 

Mean 23.1 18.0 2.7 
Standard deviation 6.1 11.0 3.3 
2.5% quantile 11 0 0.04 
97.5% quantile 31 38 14.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

241 Table  3.  Summary  of  event-level  data  for  trawl  events.  

242 

243 All  data  were  checked  for  potential  outliers.  Events  that  reported t emperature  values  over  35o  C  
or  below  6o  C  were  considered s uspect  and r emoved.  Similarly,  all  non-winter  records  with  
temperatures  below  10o  C  were  excluded.  In to tal,  285 t rawl  events  were  removed f or  having  
temperature  values  outside  of  these  ranges,  representing  0.4%  of  the  original  dataset.  Given t hat  
salinity  values  above  40  psu a re  common i n h yper-saline  estuaries  such a s  Baffin B ay,  TX,  no  
salinity  values  were  excluded f rom  this  analysis  (maximum  salinity  =  66 p su).  Sample  months  
were  aggregated i nto s easons:  spring  (March,  April,  May),  summer  (June,  July,  August),  fall  
(September,  October,  November),  and w inter  (December,  January,  February),  which w ere  
considered  as  a  categorical  variable  within t he  models.   

2.4 E stuary-level  Variables  

Land  cover  data  were  compiled a nd  analyzed a t  three  different  spatial  scales:  basin,  estuarine  
drainage  area  (EDA;  Fig.  1)  and s horeline  buffer.  Basin d ata  covers  were  summarized f rom  the  
entire  drainage  area  of  the  estuary  to t he  topographic  divide  with a djacent  river  basins  with  
outlets  to t he  sea,  while  EDAs  were  limited o nly  to th e  lowest  most  proximate  8-digit  hydrologic  
unit  code  (HUC)  watershed t hat  drains  to t he  coast  (NOAA/NOS,  1985).  The  shoreline  buffer  
was  defined  as  the  500-meter  buffer  inland f rom e ach e stuary  boundary.  EDA  sizes  ranged f rom  
246 k m2  to 1 3,690 k m2,  while  basin a reas  ranged  from  330  km2  to 1 21,762 k m2.  For  some  

estuaries  with e ntirely  coastal  drainage  areas,  basin a nd E DA  values  were  the  same  (e.g.,  
Sarasota  Bay,  FL,  Perdido B ay,  AL,  and B affin B ay,  TX;  Fig  1).  Land c over  data  from 1 992,  
2001 a nd 2 006 w ere  highly  correlated ( r  >  .98)  such  that  all  estuary-level  land c over  data  was  
calculated u sing  the  2001  National  Land C over  Database  (Homer  et  al.,  2007)  representing  the  
middle  of  the  study  period a nd s upplemented w ith  wetland c lassifications  from  C-CAP  (NOAA,  
2006)  and th e  National  Wetlands  Inventory  (USFWS,  2012).  We  grouped la nd c over  categories  
to r educe  potential  collinearity  and to   generate  combinations  of  land c over  types  expected to   
have  similar  impacts  on e stuary  habitat  quality.  The  “Agriculture”  class  was  formed b y  grouping  
crop a nd p asture,  both o f  which a re  expected t o  yield e xcess  nutrients  to w aterways  while  the  
“Anthropogenic”  class  aggregated u rban,  crop,  and p asture  into o ne  class  to r epresent  land u se  
predominantly  affected b y  humans.  The  land c over  classes  adopted in th  e  model  were  
normalized b y  the  total  land a rea  (AL)  of  the  given  spatial  unit  (basin,  EDA,  or  shoreline  buffer),  
creating  percent  land c over  values  for  each s patial  scale.  Other  approaches  to n ormalizing  land  
cover  are  described b elow.  
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 Variable  Unit 1  AE   Q AL  

 Watershed      
  Shoreline Urban 2 km    X   X 
  Shoreline Crop 2 km    X   X 
  Shoreline Agriculture 2 km    X   X 
  Shoreline Anthropogenic 2 km    X   X 
  Shoreline Wetlands 2 km    X   X 

 EDA Urban  2 km    X  X  X 
 EDA Crop  2 km    X  X  X 
  EDA Agriculture 2 km    X  X  X 
  EDA Anthropogenic 2 km    X  X  X 
  Basin Urban 2 km    X  X  X 
  Basin Crop 2 km    X  X  X 
  Basin Agriculture 2 km    X  X  X 
  Basin Anthropogenic 2 km    X  X  X 

   EDA toxic releases #    X  X  
 EDA NPDES  #    X  X  
  EDA population #    X  X  
  Basin population #    X  X  

 Estuary      
   Mean estuary salinity  psu  X    

     Estuary percent open to sea  %  X    
  Hypoxic condition  I(0:3)  X    

   Toxic algal condition  I(0:3)  X    
  Eutrophic condition  I(1:5)  X    

274 Watershed l and c over,  population,  number  of  toxic  release  sites,  and n umber  of  National  
Pollutant  Discharge  Elimination S ystem ( NPDES)  sites  (USEPA,  2015)  can b e  interpreted a s  
proxies  for  pollution,  both a t  the  basin a nd E DA  levels.  For  example,  crop  areas  may  export  
nitrogen,  phosphorous,  pesticides,  and v arious  other  agricultural  chemicals  downstream  to  
estuaries.  We  would h ave  preferred to u  se  more  direct  predictors  like  nitrogen,  phosphorus,  or  
other  pollutant  loads,  but  reliable  loading  data  were  unavailable  for  many  estuaries.  Land-based  

pollution lo ads  are  often  attenuated t hrough b iogeochemical  processing,  settling,  and f lushing.  In  
the  current  study,  it  was  infeasible  to e stimate  reaction r ates  or  settling  velocities  for  the  diverse  
range  of  potentially  important  pollutants.  In a n  effort  to in directly  account  for  settling  and  
flushing,  many  estuary-level  variables  were  normalized b y  estuary  area  (AE)  and f low  (Q),  in  
addition to   AL,  creating  several  stressors  per  variable  (e.g.,  EDA  Crop/AE,  EDA  Crop/Q,  and  
EDA  Crop/AL;  Table  4).  Shoreline  buffers  are  not  large  enough to p  roduce  significant  loads,  but  
may  affect  nearshore  habitat  conditions,  and w ere  thus  normalized b y  only  AE.  Five  estuarine  
variables  from  the  2007  National  Estuarine  Eutrophication A ssessment  (Bricker  et  al.,  2008),  
including  estuary  average  salinity,  estuary  percent  open to s  ea  (%),  hypoxic  condition,  and to xic  
algal  condition ( scaled  from  0 =   no p roblem  to 3   =  high),  and e utrophication c ondition ( scaled  

from  1 =   low  to 5 =    high),  were  also in cluded w ithout  normalization.  In to tal,  47 c andidate  
estuary-level  variables  were  considered  (Table  4).  Basic  estuary-level  data  can b e  found in   
Supplementary  Material,  SM  1 a nd  SM  2.   
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293 Table  4  Estuary-level  predictor  variables  considered i n t he  modeling  analysis  using  various  

normalization o ptions  (1 =   no n ormalization;  A ea 2
E  =  estuary  ar  (km );  Q  =  flow  (m3/day);  AL  =  

total  land a rea).  Note:  I(0:3)  indicates  an i nteger  variable  (0,  1,  2,  or  3).  
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296 2.5 H ierarchical  Generalized L inear  Model  

Species  presence  and a bsence  in tr awl  samples  was  modeled  as  a  binary  response,  where  trawls  
that  contained a   given s pecies  were  assigned a   value  of  one  and t rawls  that  did n ot  collect  that  
species  were  assigned a   value  of  zero.  A  common  approach  for  modeling  binary  data  is  to u se  a  
generalized li near  model  that  extends  the  framework  of  linear  regression m odeling  to n on-
normally  distributed v ariables  by  the  use  of  a  link f unction.  These  types  of  models  are  used  
extensively  in m any  fields,  including  ecology  (Guisan a nd Z immermann,  2000;  Guisan e t  al.,  
2002;  Gelfand e t  al.,  2005;  Gelman  and H ill,  2006;  Latimer  et  al.,  2006,  Bolker,  2008).   

P(yi)  =  logit-1  (Xi  β)       (Eq.  1)  

where  P(yi)  is  the  probability  of  fish p resence  in t rawl  i,  Xi  is  a  matrix  of  predictor  variables,  and  
β   is  a  vector  of  corresponding m odel  coefficients.  The  inverse-logit  function is   used t o b ack  
transform  the  response  from  the  continuous  modeling  domain ( - ∞   to + ∞)  to p robability  space  

� 
�

values  between 0 a  nd 1 :  logit-1  (x)  =    
��  �� 

. 

In  addition to a  ccounting f or  binary  responses,  our  model  is  constructed h ierarchically  in o rder  to  
capture  different  levels  of  organization w ithin t he  data.  Hierarchical  models  use  “random  
effects”  to a ccount  for  data  that  are  similar  and  can b e  grouped  as  members  of  a  common  
statistical  hyperdistribution ( Gelman a nd  Hill,  2006).  This  approach h elps  account  for  intra-class  
correlation a mong g rouped d ata  allowing  for  statistically  valid h ypothesis  testing  of  group-level  
(i.e.,  estuary-level)  predictor  variables  (Gelman  et  al.,  2014).  Random e ffects  were  used i n th is  
study  to a ccount  for  variation a t  the  estuary,  program,  and s tate  level  that  was  not  explained b y  
other  predictors  in th e  model.  Without  this  added  model  flexibility,  prescreening  would n ot  have  
been p ossible  without  much n oise  from  spurious  correlations  between p redictors  and w atershed  
stressors  (see  Section 4 .4).   

2.6 S ingle-stressor  Models  

For  each f ish  and in vertebrate  species,  we  initially  screened a ll  47 p ossible  estuary-level  
predictor  variables  (xpred)  separately  while  controlling  for  event-level  variables.  Logistic  
hierarchical  models  were  fit  using  the  “lme4”  R  package  with p arallel  processing  provided b y  the  
“doparallel”  R  package  (R  Development  Core  Team,  2011;  Bates  et  al.,  2013;  Calaway  et  al.,  
2015).  The  adopted  model  structure  is  shown b elow.  

P(y)  =  logit-1  (βo  +  βseason  +  αestuary  +  αstate  +  αprogram  +  βtemp*xtemp  +  βsal*xsal  +  βsalsq*xsalsq  +    
βdist*xdist  +  βpred*xpred)       (Eq.  2)  

where  P(y)  is  the  probability  of  occurrence  of  a  given s pecies,  βo  is  the  overall  y-intercept  for  the  
model,  and  βseason  is  a  categorical  variable  used t o  account  for  seasonal  differences.  Random  
effects,  αestuary,  αstate,  and  αprogram,  were  assumed to   follow  normally  distributed h yperdistributions  
centered a round  zero.  For  each s pecies  modeled,  32  different  values  of  αestuary  were  returned  
(Rookery  Bay  is  excluded d ue  to n o tr awl  events),  five  values  for  αstate  and  seven v alues  for  
αprogram.  Slope  coefficients  βtemp,  βsal,  βsalsq,  and  βdist  were  determined f or  the  event-level  effects  of  
temperature  (xtemp),  salinity  (x 2 

sal),  salinity  (xsalsq),  and d istance-to-shore  (xdist),  respectively.  The  
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334 square  of  salinity  (xsalsq)  was  included b ecause  preliminary  analysis  indicated a   potential  non-
linear  (quadratic)  relationship b etween s alinity  and  probability  of  fish o r  invertebrate  presence.  
βpred  is  the  slope  coefficient  of  the  estuary-level  anthropogenic  variable  being  screened.  These  
single-stressor  models  were  used t o t est  the  significance  of  each e stuary-level  predictor  (Table  4)  
on t he  occurrence  of  every  fish a nd i nvertebrate  species  (Table  2).  Predictor  variables  were  
considered s tatistically  significant  when th eir  corresponding  βpred  coefficients  were  significantly  
different  from  zero a t  a  95%  confidence  level  (p<0.05).   

2.7 Mu lti-stressor  Models   

Candidate  estuary-level  variables  for  multi-stressor  modeling  were  selected  based o n t he  single  
stressor  modeling  results.  Favoring  parsimonious  multi-stressor  models,  we  selected o nly  
estuary-level  variables  that  were  found to b  e  significant  for  over  20%  of  the  species.  
Furthermore,  variables  were  tested  for  multicollinearity,  and w hen o ne  or  more  variables  were  
found t o b e  correlated  (|r|  ≥   0.65;  Supplementary  Material,  SM  3),  only  the  most  significant  

variable  was  included.  This  process  reflects  two a ssumptions:  1)  stressor  variables  with t ruly  
mechanistic  underpinnings  should a ffect  a  broad  range  of  species  across  the  GoM  and 2 )  
variables  that  represented  similar  mechanisms  (e.g.,  Basin C rop/AL  is  a  subset  of  Basin  
Agriculture/AL)  should o nly  enter  the  model  once.  Performing  variable  selection o n a   subset  of  
probable  stressors  instead o f  the  entire  47 d ependent  variables  (Table  4)  avoids  the  inclusion o f  
spurious  or  “noisy”  predictors  and th us  leads  to  more  robust  models  (Cohen,  1990;  Derksen a nd  
Kesselman,  1992).   

For  each s pecies,  all  event-level  variables  (temperature,  salinity,  salinity2,  and d istance  to s hore)  
and t he  selected c andidate  estuary-level  variables  were  included to gether  in  a  backward  model  
selection p rocedure  using th e  “LMERConvenienceFunctions”  R  package  (Tremblay  and R ansijn,  
2015).  Backward s election e liminates  variables  in  a  step-wise  fashion b ased  on s tatistical  
significance,  until  the  final  model  contains  only  predictors  significant  at  the  95%  confidence  
level.  Note  that  since  multi-stressor  models  could  have  up t o n ine  predictors  (four  natural  
variables  and  five  anthropogenic  ones;  Eq.  2 a nd  Table  5)  and t hree  levels  of  random e ffects  
based o n p reliminary  modeling  results,  these  models  were  only  developed  for  species  caught  in  
at  least  120 tr awl  events.  This  insures  that  we  have  at  least  10 o bservations  for  each p ossible  
predictor  and l evel  of  random e ffect  (Peduzzi  et  al.,  1996;  Allison,  2012).  Model  selection u sing  
Akaike  Information C riterion ( AIC)  and B ayesian  Information C riterion ( BIC)  was  also e xplored  
(Sakamoto  et  al.,  1986;  Schwarz,  1978),  but  both  of  these  criteria  added i nsignificant  predictors  
as  well  as  eliminated s ignificant  predictors  making  these  methods  not  desirable  for  the  overall  
project  goals.   
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 Stressor    Species affected (%)    Negative relationships (%)   Candidate variables 
  Basin Anthropogenic/AL  53  77  X 
   Mean estuary salinity  49  61  X 
  Basin Agriculture/AL  47  70  
  Basin Crop/AL  44  72  
  Basin Crop/Q  39  73  X 
  Basin Anthropogenic/Q  37  67  

  Shoreline Agriculture/AL  35  15  X 
  Basin Agriculture/Q  35  70  

   EDA toxic releases/AE  23  85  X 
  Basin Urban/Q  21  58  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

371 Table  5  Summary  of  highly  significant  estuary-level  stressor  variables  (statistically  related t o  
over  20%  of  species),  as  determined f rom  the  single-stressor  models.  Negative  relationships  
indicate  the  percent  of  significant  relationships  that  are  negative.  Candidate  variables  are  those  
tested i n t he  multi-stressor  models.  
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376 2.8 A ssessment  of  Estuary  Level  Anthropogenic  Stress   

Once  the  multi-stressor  models  were  developed,  they  were  used t o c reate  an e stuary  stress  index  
which q uantifies  the  amount  of  anthropogenic  disturbance  in  estuaries  by  comparing  sampled  
conditions  to t hose  predicted u nder  two d ifferent  benchmarks  of  anthropogenic  disturbance.  
Least  disturbed c onditions  (LDC)  were  defined a s  the  minimum  value  of  each s tressor  observed  

at  the  regional  scale  (SM  1),  and  minimally  disturbed c onditions  (MDC)  were  predicted b y  
setting  stressor  values  in t he  models  to z ero.  LDC  and M DC  are  benchmarks  of  ecological  
condition f requently  used  to a ssess  the  degree  to w hich t he  current  conditions  of  a  particular  
system  deviate  from a   more  desirable  state  (Stoddard e t  al.,  2006;  Hawkins  et  al.,  2010).  We  
used t he  region-wide  stressor  minima  to s pecify  LDC  as  an e xample  of  one  benchmark  to a ssess  
estuaries  in t he  GoM,  but  sub-regional  LDCs  might  also b e  developed  and u sed w ithin th is  same  
framework.  To j udge  the  amount  of  anthropogenic  watershed s tress  on e ach  estuarine  system,  the  
absolute  value  of  each s tressor  coefficient  was  averaged a cross  all  species  to d etermine  the  mean  
absolute  rate  of  change  in p robability  of  species  presence  (on t he  log-odds  scale)  associated w ith  
each s tressor.  Mean  absolute  coefficients  were  then m ultiplied b y  the  actual  estuary-level  
conditions  and c ompared  to b oth  LDC  and  MDC  to c reate  the  estuary  stress  index.  
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392 3.  Results  

3.1 S ingle-stressor  Models   

All  estuary-level  stressor  variables  (Table  4)  were  screened i n s ingle-stressor  models  (Eq.  2)  that  
controlled f or  natural  variability  at  the  event-level  (e.g.,  temperature,  salinity)  as  well  as  for  
intra-class  correlation a nd u nknown v ariability  at  group le vels  (i.e.,  estuary,  state,  program).  
Variables  were  then r anked a ccording  to th e  number  of  species  with w hich  they  had s ignificant  
relationships  (Table  5).  Basin A nthropogenic/AL,  Basin C rop/AL,  and B asin A griculture/AL  were  
found t o b e  statistically  significant  for  over  40%  of  the  assessed  fish a nd in vertebrate  species  
with m ore  than 7 0%  of  those  significant  relationships  being  negative.  Of  the  other  anthropogenic  
candidate  stressors,  Basin C rop/Q  and E DA  toxic  releases/AE  were  also n egatively  related t o t he  

393 

394 

395 

396 

397 

398 

399 

400 

401 

13 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

405

410

415

420

425

430

435

402 majority  of  the  species,  while  Shoreline  Agriculture/AL  had a   predominantly  positive  
relationship.  Mean e stuary  salinity  was  found to b  e  a  significant  predictor  for  49%  of  modeled  
species.   

3.2  Multi-stressor  Models  

Multi-stressor  models  for  individual  fish a nd i nvertebrate  species  were  developed b y  performing  
backward v ariable  selection o n e vent-level  variables  (temp,  sal,  salsq,  and d ist)  and t he  five  
candidate  estuary-level  stressors  identified i n T able  5 ( see  Methods  section  for  selection c riteria).  
This  resulted i n a   unique  multi-stressor  model  for  each f ish  and i nvertebrate  species  (SM  4).  For  
example,  the  model  for  Silver  Perch ( Bairdiella c hrysoura)  was:   

P(y)  =  logit-1  (-2.92 +   0.02*[temp]  +  0.04*[sal]  - .001*[salsq]   
- 0.05*[dist]  - 0.40*[EDA  toxic  releases/AE]  - 0.22*[Basin C rop/Q]  
+  0.29*[Mean  estuary  salinity]  +  βseason  +  αestuary  +  αstate  +  αprogram)          (Eq.  3)  

The  model  indicates  that  Silver  Perch p resence  increases  with h igher  temperatures  and i n  areas  
closer  to t he  shore.  The  relationship b etween s alinity  and  Silver  Perch is   quadratic  with a n  
optimal  value  at  20  psu,  which is   consistent  with th e  fact  that  the  Silver  Perch p refer  higher  
saline  estuaries.  Silver  Perch w as  negatively  related to E  DA  toxic  releases/AE  and B asin C rop/Q.  
Note,  coefficients  for  event-level  variables  are  calculated i n t heir  natural  units  (i.e.,  oC)  while  
coefficients  for  estuary-level  variables  (e.g.,  EDA  toxic  releases/AE,  estuary  salinity)  are  based  
on t heir  normalized v alues  (with m ean o f  zero  and s tandard d eviation o f  one).  Therefore,  a  
change  of  1o  C  at  the  sampling  spot  has  an e ffect  of  0.02 o n t he  log  odds  of  Silver  Perch p resence  

while  the  change  of  one  standard d eviation o f  EDA  toxic  releases/A  6   10-4 
E ( .3 x  releases/km2)  

represents  a  change  of  0.40 ( SM  1,4).  Multi-stressor  models  can b e  used to p  redict  changes  in  
species  presence  within e stuarine  systems  due  to c hanges  in e stuary-level  stressors  (SM  5).  

The  fraction o f  anthropogenic  (agricultural  plus  urban)  land  cover  in a n  estuarine  basin ( Basin  
Anthropogenic/AL)  was  found to b  e  the  most  significant  anthropogenic  stressor  in m ulti-stressor  
models  affecting  39%  of  species,  of  which 7 7%  showed a   negative  relationship ( Table  6).  Basin  
Crop/Q  was  related t o 3 7%  of  species,  with 8 6%  of  those  relationships  being  negative.  Shoreline  
Agriculture/AL  was  related t o 2 3%  of  the  species  with m ost  relationships  being  positive,  and  
EDA  toxic  releases/AE  was  related t o 2 1%  of  the  species  with m ost  relationships  being  negative.  
Average  estuary  salinity  was  related t o 2 5%  of  species  as  well.  Mean a bsolute  values  of  stressor  
coefficients  in lo g  odds  showed t hat  Basin A nthropogenic/AL  and B asin C rop/Q  exerted t he  
largest  influence  on s pecies  presence  throughout  the  GoM  (Table  6).  
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437 Table  6  Percent  of  species  significantly  related to   candidate  estuary-level  stressors  in m ulti-
stressor  models  and p ercent  of  those  relationships  that  are  negative.  Mean  absolute  change  is  
calculated b y  averaging  the  absolute  value  of  the  slope  coefficients  for  all  57 s pecies.    
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Stressor  Species  affected  (%)  Negative r elationships  (%)  Mean  absolute c hange    
(log  odds)  

Basin  Anthropogenic/AL  39  77  .27  
Basin  Crop/Q  37  86  .24  
Shoreline  Agriculture/AL  23  8  .15  
EDA  toxic  releases/AE  21  83  .14  
Mean  estuary  salinity  25  36  .16  

441 3.3 A ssessment  of  Estuary  Level  Anthropogenic  Stress   

The  aggregated in tensity  of  anthropogenic  stress  for  each  GoM  estuary  was  combined t o f orm  an  
estuary  stress  index b ased o n t he  mean a bsolute  change  in lo g  odds  of  species  presence,  
comparing  current  to b enchmark ( LDC  or  MDC)  conditions  (Fig.  2).  We  used t he  mean  absolute  
value  of  both p ositive  and n egative  coefficients,  reflecting  that  increases  in  stress-tolerant  species  
can in dicate  estuary  disturbance  in th e  same  way  that  declining  sensitive  species  do ( Felley  1987;  
Caddy  2000;  de  Leiva  Moreno e t  al.  2000;  Chesney  and B altz  2001;  Lewis  et  al.  2011).  The  
estuary  stress  index p rovides  a  concise  and q uantitative  way  to e stimate  the  amount  of  
anthropogenic  stress  affecting  each  estuary,  and s ince  values  are  additive  in lo g  odds,  the  

contributions  of  individual  stressors  can b e  observed s eparately  (Fig.  2).  Basin A nthropogenic/AL  

had t he  largest  effect  on  species  presence  in t he  GoM,  averaging  nearly  70%  of  total  deviations,  
and w as  most  prevalent  in th e  highly  urbanized s outhwest  FL  estuaries  (Sarasota  Bay,  Charlotte  
Harbor,  Caloosahatchee  River,  and T ampa  Bay)  along  with s everal  estuaries  in t he  western  GoM  
(Baffin B ay,  Upper  and  Lower  Laguna  Madre,  and A ransas  Bay,  TX  and L ake  Borgne  and  Lake  
Pontchartrain,  LA).  Basin C rop/Q  and E DA  toxic  releases/AE  both h ad la rge  effects  in r elatively  
few  estuaries  where  those  stressors  had  elevated v alues  (Upper  Laguna  Madre,  Baffin B ay,  
Galveston B ay,  and  Sabine  Lake,  TX  and C alcasieu  Lake,  LA)  while  Shoreline  Agriculture/AL  
was  prevalent  in s everal  TX  and  LA  estuaries.   

Anthropogenic  influence  was  also s plit  between p ositive  and n egative  effects  (Fig.  3)  in o rder  to  
assess  in w hich d irection w atershed s tressors  were  impacting  GoM  estuaries.  Both p ositive  and  
negative  components  exist  for  the  same  stressor  because  some  of  the  57 s pecies  modeled  are  
positively  related to th  e  stressor  while  other  species  are  negatively  related to t  he  same  stressor  
(Table  6;  SM  4).  The  magnitude  of  negative  impacts  are  significantly  larger  for  Basin  

Anthropogenic/AL,  Basin  Crop/Q,  and E DA  toxic  releases/AE,  while  the  opposite  is  true  for  
Shoreline  Agriculture/AL  (Fig.  3).   
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468 Fig.  2  Estuary  stress  index  is  the  mean  anthropogenic  effect  in l ogs  odds  based o n t he  absolute  
value  of  model  coefficients.  The  x-axis  represents  minimally  disturbed  conditions  (MDC;  all  
anthropogenic  stressors  =  0)  and th e  dotted l ine  represents  least  disturbed  conditions  (LDC)  for  
the  GoM  (SM  1).  
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474 Fig.  3  Mean a nthropogenic  effect  by  estuary  separated b y  positive  and n egative  effects.  The  sum  
of  the  mean p ositive  and  mean n egative  effects  equal  the  total  absolute  effect  shown i n  Figure  2.   475 
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477 3.4 I ndicator  Species  

Modeling  individual  species  allowed f or  the  identification o f  fish a nd i nvertebrate  species  whose  
presence  had s ignificant  negative  or  positive  relationships  with a nthropogenic  stressors.  Species  
with th e  largest  negative  coefficients  for  Basin A nthropogenic/AL  were  Atlantic  Moonfish  
(Selene  setapinnis),  Gulf  Butterfish ( Peprilus  burti),  Bay W hiff  (Citharichthys  spilopterus),  
White  Shrimp ( Litopenaeus  setiferus),  Blue  Catfish ( Ictalurus  furcatus),  Bluntnose  Jack  
(Hemicaranx  amblyrhynchus),  Sea  Bass  (Centropristis  philadelphica)  and F ringed  Flounder  
(Etropus  crossotus)  (SM  4).  Species  with la rge  negative  relationships  with E DA  toxic  
releases/AE   were  Gulf  and C hain P ipefish ( Syngnathus  scovelli,  Syngnathus  lousianae),  Pink  

Shrimp ( Farfantepenaeus  duorarum),  Atlantic  Threadfin H erring  (Opisthonema o glinum),  
Atlantic  Stingray  (Dasyatis  sabina),  Blackcheek  Tonguefish ( Symphurus  plagiusa),  Silver  Perch,  
and B lue  Crab ( Callinectes  sapidus).  Several  species  had c onsistently  positive  responses  to  
anthropogenic  stressors  including:  Black  Drum ( Pogonias  cromis),  Gafftopsail  Catfish ( Bagre  

marinus),  Hardhead C atfish ( Ariopsis  felis),  White  and S triped  Mullet  (Mugil  curema,  Mugil  

cephalus),  and  Lined  Sole  (Achirus  lineatus).  

3.5 R andom  Effects  and S easonality  

State  random e ffects  were  included t o a ccount  for  the  potential  impact  of  state-level  fishing  
regulations  on s pecies  presence,  as  well  as  large-scale  natural  variations  in  habitat  that  may  occur  
at  the  state  level.  In  addition,  program  random  effects  were  included to a  ccount  for  variation  
among  different  trawl  programs  (efficiency  and e ffort).  State  and p rogram r andom e ffects  were  
averaged a cross  all  species  (Fig.  4).  Mean s tate  effects  ranged f rom  -0.3 ( FL)  to 0 .4  (TX)  and  
program  effects  vary  from  -0.8 ( MS)  to 0 .6 ( AL)  suggesting  substantial  variability  in th e  effects  
of  different  program s ampling  methods  on t he  probability  of  species  presence  in t rawl  events.  
Seasonal  effects  were  included a s  categorical  variables.  Fall  had th e  highest  mean e ffect  while  
mean s ummer,  spring,  and w inter  offsets  were  0.38,  0.36,  and 0 .38 lo wer  (on l og  odds  scale),  
respectively.  It  is  important  to n ote  that  event-level  temperature  and s alinity  measurements  were  
also i ncluded a s  predictors  in t he  model,  so t hat  these  seasonal  effects  represent  variability  that  
exists  in a ddition to s  easonal  patterns  in t emperature  and s alinity.  
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506 Fig.  4  Mean s tate  and p rogram r andom e ffects   
across  all  fish a nd in vertebrate  species.    
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517

509 The  magnitudes  of  estuary-level  random e ffects  were  determined b y  averaging  across  all  species  
(Fig.  5).  The  relatively  high r andom  effects  observed in e  stuaries  such  as  Aransas  Bay,  San  
Antonio B ay,  TX,  Terrebonne/Timbalier  Bays,  LA,  and A palachicola  Bay,  FL  point  to e stuaries  
where  species  presence  was  higher  than w ould b e  expected b ased o n th e  predictors  and o ther  
random e ffects  included i n th e  models.  Similarly,  estuaries  such  as  Matagorda  Bay,  TX  and  
Breton S ound,  LA  had a   lower  probability  of  presence  than  would b e  expected.  In s uch  estuaries,  

other  biophysical  or  watershed f actors  that  were  unaccounted  for  by  this  analysis  may  be  
affecting  habitat  quality.   
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518 Fig.  5  Estuary  random  effects.  Grey  square  indicates  the  mean ( across  species)  and e rror  bars  
show  the  0.1 a nd 0 .9 q uantiles.  Positive  random e ffects  imply  species  presence  was  under  
predicted b y  the  other  components  of  the  model.  Negative  random  effects  imply  the  opposite.  
Rookery  Bay  does  not  have  an e stuary  random e ffect  because  it  had n o t rawl  samples.  
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523 4.  Discussion  

4.1 A nthropogenic  Stressors   

Our  study  contrasts  with  previous  biological  assessment  efforts  that  sought  to c haracterize  
biological  condition,  but  which w ere  not  designed  to q uantitatively  relate  that  condition to   
watershed  anthropogenic  stressors  (Deegan  et  al.,  1997;  Macauley  et  al.,  1999;  Summers,  2001;  
Hughes  et  al.,  2002;  Meng  et  al.,  2002;  Harrison a nd  Whitfield,  2004,  2006;  Breine  et  al.,  2007;  
Coates  et  al.,  2007;  Uriarte  and B orja,  2009;  Breine  et  al.,  2010;  Delpech e t  al.,  2010;  Jordan e t  
al.,  2010;  Cabral  et  al.,  2012).  Previous  work  in th e  U.S.  (e.g.,  Greene  et  al.,  2015)  has  
characterized th e  magnitudes  of  anthropogenic  stressors  in e stuarine  watersheds,  but  there  has  

been l imited p rogress  toward q uantitatively  linking  these  stressors  to t he  biological  condition o f  
estuaries.  In E urope,  Teichart  et  al.  (2016)  used  ecology  quality  ratios  (EQR)  scores  from  seven  
European  countries  to d etermine  water  quality  stressors  that  affect  estuarine  biological  condition.  
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Though t his  was  a  step to ward li nking  biological  condition t o w atershed s tressors,  there  are  still  
questions  about  how  comparable  EQR  ratios  are  among  countries  (Poikane  et  al.,  2014)  and  
basin-level  stressors  were  not  explored.  In t his  study,  we  demonstrate  a  linkage  between  
watershed s tressors  at  three  spatial  scales  (basin,  EDA,  and s horeline)  and  estuarine  biological  
condition u sing  regression m odels  that  relate  watershed s tressors  to t he  log o dds  of  species  
presence  while  accounting  for  natural  variation a nd o ther  potentially  confounding  effects  (e.g.,  

systematic  biases  associated w ith d ifferent  sampling  programs).  We  also d evelop a   quantitative  
index  of  estuary  stress  using  mean s tressor  coefficients  (averaged a cross  species)  and t he  
variability  in s tressors  across  estuarine  watersheds  (Figs.  2,  3).  We  found w idespread  and l argely  
negative  influences  of  landscape  stressors  on b oth  fish a nd in vertebrate  species.  Our  results  
suggest  that  estuaries  east  of  the  Mississippi  delta  to th e  Florida  panhandle  are,  in  general,  less  
impacted b y  watershed s tress  than o ther  systems  in t he  GoM.  Our  indicator  screening  process  
also p rovides  new  insight  into s pecies-level  responses  to e stuary  stressors,  revealing  species  
indicators  on b oth th e  tolerant  and s ensitive  sides  of  the  ‘stress-tolerance  gradient’  (Whittier  et  
al.  2007).  

Our  results  indicate  that  human  activities  in u pstream  watersheds  have  statistically  significant  
and l argely  negative  relationships  on a   substantial  portion o f  estuarine  fish  and i nvertebrate  
species.  The  percent  of  anthropogenic  land c over  in r iver  basins  (Basin A nthropogenic/AL)  has  
the  strongest  relationship,  affecting  22 s pecies  (17  negatively)  in t he  multi-stressor  models  
(Table  6)  including  five  of  the  ten m ost  prevalent  species  in th e  GoM  (SM  4).  It  accounts  for  

nearly  70%  of  all  absolute  deviations  from M DC  (Fig.  3).  The  “Anthropogenic”  land c ategory  is  
a  composite  of  urban,  crop,  and p asture,  and it   generally  outperformed t he  individual  land  
categories  in te rms  of  predictive  performance  (Table  5).  Nonetheless,  it  is  interesting  to  consider  
whether  one  of  the  three  land c over  classes  (urban,  crop a nd p asture)  plays  a  dominant  role.  The  
high r anking  of  crop  and  agriculture  in s ingle  stressor  models  (Table  5)  coupled w ith th e  fact  that  
agriculture  comprises  69%  of  anthropogenic  land  use  within o ur  study  area,  suggests  that  it  is  
perhaps  the  dominant  form o f  land  cover  leading  to e stuary  disturbance.  To  further  explore  this,  
we  repeated th e  single-stressor  modeling  three  times,  omitting  estuaries  in  FL,  TX,  and t he  
central  Gulf  states  (LA,  MS,  and A L),  in tu rn,  as  a  simple  sensitivity  analysis.  Basin  
Anthropogenic/AL  remained t he  top s tressor  when  both t he  central  state  estuaries  and t he  TX  

estuaries  were  omitted,  but  Basin C rop/AL  became  the  top s tressor  when  FL  estuaries  were  
omitted.  The  increased i mportance  of  Basin C rop/AL  when  Florida  estuaries  are  excluded i mplies  
that  crop p roduction  might  be  more  influential  in th e  western  GoM.  Of  note,  the  categorical  
variables  representing  hypoxic,  toxic  algal,  and e utrophic  condition e stimates  (Bricker  et  al.  
2008)  were  not  found t o  be  significant  predictors  in s ingle-stressor  models,  suggesting  these  
metrics,  as  calculated a nd u sed i n t his  study,  are  not  primary  drivers  of  species  presence  in G oM  
estuaries.  

Basin C rop/Q,  reflecting c rop a reas  normalized b y a verage  flow  rate,  is  significantly  related t o  
21 s pecies  (18 n egatively).  This  stressor  is  likely  a  proxy  for  the  concentration o f  crop-related  
pollutants  entering  a  system.  Basin C rop/Q  was  highest  in B affin B ay  and  Upper  Laguna  Madre,  
two h yper-saline  southern T X  estuaries,  and e levated i n C orpus  Christi  Bay,  TX  and  
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576 Terrebonne/Timbalier  Bays,  LA  as  well  (SM  1).  These  results  imply  that  as  estuary  flushing  
decreases,  estuaries  become  more  susceptible  to p ollution.  Hydrologic  alteration a s  well  as  
consumptive  water  use  by  urban a nd a gricultural  sources  can r educe  water  inflow  to e stuaries  
and t he  dilution o f  contaminants  in s urface  water  (Harwell,  1997;  Day  et  al.,  2000;  Flannery  et  
al.,  2002).   

The  number  of  toxic  release  sites  in t he  estuarine  drainage  area  (EDA)  normalized b y  the  estuary  
area  is  significantly  related to 1  2 s pecies  (10 n egatively).  Five  of  the  negative  relationships  are  
with s pecies  associated  with b ottom  environments  (e.g.,  Atlantic  Stingray,  Blue  Crab,  Pink  
Shrimp,  Blackcheek  Tonguefish,  and H og  Choker  (Trinectes  maculatus);  SM  4).  Galveston B ay  

and S abine  Lake,  TX  and  Calcasieu  Lake,  LA  have  the  highest  historical  levels  of  toxic  releases,  
potentially  due  to u pstream  petrochemical  plants  (USEPA  2015;  Blackburn  2015).  Our  findings  
are  consistent  with p revious  research r eporting  measurable  negative  effects  of  toxic  
contamination a nd r eleases  on e stuarine  organisms,  particularly  in th e  benthos  (Pearson a nd  
Rosenberg,  1978;  Boesch a nd R osenberg,  1981;  Malins  et  al.,  1985;  Engle  et  al.,  1994;  Macauley  
et  al.,  1999;  Brown e t  al.,  2000).  

The  percent  of  the  estuarine  shoreline  buffer  comprised o f  agricultural  land  cover  is  the  only  
anthropogenic  stressor  identified t o b e  predominantly  associated w ith a n i ncrease  in s pecies  
presence.  It  is  significantly  related t o 1 3 s pecies;  12 o f  these  positively.  Estuaries  with s horeline  
agriculture  greater  than 1 0%  are  generally  found i n T X  and  LA  (SM  1).  One  possible  
explanation f or  this  finding  is  a  positive  response  to i ncipient  stress  as  observed i n o ther  estuary  
studies  (Jordan a nd V aas,  2000;  Jordan a nd S mith,  2005).  A  possible  mechanism  for  a  positive  
response  to s tress  could b e  greater  productivity  and d iversity  due  to n utrient  enrichment  (i.e.,  a  
release  from  oligotrophy;  Nixon a nd B uckley,  2002),  or  by  a  combination o f  stressors  that  has  

not  reached a   threshold f or  causing  negative  effects  (Jordan e t  al.,  2010).  Alternatively,  long-
term e ffects  of  nutrient  enrichment  (and o verfishing)  have  been s hown to l  ead t o t he  dominance  
of  pelagic  over  benthic/demersal  species  (Caddy,  2000;  de  Leiva  Moreno  et  al.,  2000).  Nine  of  
the  12 s pecies  positively  linked to s  horeline  percent  agriculture  are  pelagic  species  (e.g.,  Gulf  
Menhaden,  Atlantic  Bumper  (Chloroscombrus  chrysurus),  Ground  Mullet  (Menticirrhus  

americanus),  and  White  Mullet;  SM  4)  and tw o  more  are  catfish s pecies  which t hrive  in h igh  
nutrient  waters  (Ariopsis  felis,  Bagre  marinus).   More  investigation i nto t he  positive  relationship  
between s horeline  agriculture  and t he  presence  of  several  species  is  warranted.  

 

4.2 A ssessment  of  Estuary  Level  Anthropogenic  Stress   

We  adopted b oth  MDC  and  LDC  as  possible  benchmarks  against  which t o  compare  estuary  
disturbance  in o rder  to d emonstrate  how  our  index  of  estuary  stress  could b e  used w ith b oth;  
however,  each o f  these  potential  benchmarks  have  limitations.  MDC  requires  a  somewhat  greater  
degree  of  model  extrapolation,  while  LDC  is  not  referenced t o a n a bsolute  ecological  state  
making  it  susceptible  to s hifting  baselines  as  watersheds  continue  to d evelop o ver  time  (Pauly,  
1995).  LDC  conditions,  as  defined in t  his  study,  do n ot  deviate  greatly  from M DC  (0.16 c hange  
in l og  odds;  Fig.  2).  LDC  for  both S horeline  Agriculture/AL  and E DA  toxic  releases/AE  were  zero  
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616 (i.e.,  equal  to  MDC)  while  LDC  for  Basin C rop/Q  is  essentially  the  same  as  MDC.  The  minimum  
LDC  value  for  Basin A nthropogenic/AL  was  8.9%  and th is  stressor  explains  the  majority  of  the  
difference  between  MDC  and  LDC.  The  application o f  LDC  across  such a   large  system  as  the  
GoM  might  be  debatable  (Stoddard  et  al.,  2006);  however,  comparing  the  MDC  and  LDC  
benchmarks  in  Fig.  2 s uggest  the  overall  disturbance  pattern i ndicated b y  our  results  should b e  
fairly  robust  to s mall  changes  in b enchmark a ssumptions.  Estuary  rankings  essentially  remain t he  

same  whether  they  are  based o n d eviation f rom L DC  or  MDC  conditions  since  both b enchmarks  
are  constant  across  the  GoM  and w ould o nly  change  if  sub-regional  benchmarks  are  developed  
on t he  assumption th at  baseline  conditions  vary  by  region.  Another  approach t hat  might  lead t o  
different  estuary  ranks  would b e  if  the  estuary  stress  index  was  defined a s  only  the  negative  (i.e.,  
negative  component  in  Fig.  3)  or  the  net  effect  of  watershed l evel  stressors  (i.e.,  the  difference  
between th e  positive  and  negative  components  in  Fig.  3)  for  specific  subsets  of  species  of  
interest.  If  system  productivity  (i.e.,  more  fish f or  anglers)  is  of  interest,  then a n e stuary  stress  
index  could b e  created s pecifically  for  species  of  interest  for  commercial  and r ecreational  
fisherman.  However,  both o f  these  alternatives  ignore  the  value  of  stress-tolerant  species  as  
potential  indicators  of  anthropogenic  influence  (see  below;  Whittier  et  al.,  2007).    

4.3 I ndicator  Species  

The  estuary  stress  index  proposed h ere  is  based o n t he  responses  of  widely  distributed f ish a nd  
invertebrate  species  to d ifferent  landscape  anthropogenic  stressors  that  provide  insights  into  
important  regional  indicator  species.  Forty-eight  of  the  57 s pecies  studied  are  significantly  
related to a  t  least  one  anthropogenic  stressor  in t he  multi-stressor  models  (SM  4).  While  the  
overwhelming  direction o f  response  is  negative,  responses  of  species  with a pparent  stress  
tolerance  (i.e.,  those  that  responded p ositively  to i ncreasing  stressor  levels)  are  also p resent  (see  

Section 3 .4).  Tolerant  species  tend to h  ave  greater  behavioral  and d iet  plasticity,  greater  niche  
breadth a nd  may  benefit  from th e  absence  of  more  sensitive  competitors  (Vázquez  and  
Simberloff,  2002;  Swihart  et  al.,  2003;  Devictor  et  al.,  2008;  Wilson e t  al.,  2008;  Segurado e t  al.,  
2011).    

4.4 H ierarchical  Modeling  

The  ability  to  model  variability  at  multiple  scales  (i.e.,  estuaries,  states,  programs)  is  an  
important  advantage  of  hierarchical  modeling  in th is  application.  Critically,  it  allowed u s  to  
perform  statistically  valid h ypothesis  testing  concerning  which w atershed  anthropogenic  
stressors  are  significantly  related t o s pecies  presence.  The  hierarchical  approach c an b e  
contrasted w ith  more  traditional  “no p ooling”  and  “complete  pooling”  approaches  to r egression  
modeling  (Gelman a nd H ill,  2006;  Qian e t  al.,  2010;  Cuffney  et  al.,  2011).  If  we  had d eveloped  
independent  models  (or  parameter  estimates)  for  each e stuary  (no p ooling),  then i t  would b e  
infeasible  to s tatistically  assess  the  significance  of  stressors  acting  across  multiple  estuaries.  On  
the  other  hand,  if  all  data  were  combined in to a   single  model,  but  random e ffects  were  omitted,  
then w e  would b e  treating  each t rawl  sample  as  statistically  independent,  failing  to a ddress  the  
substantial  intraclass  correlation th at  exists  among  samples  from th e  same  estuary,  state,  and  
program  (Gelman e t  al.,  2014).  As  an e xample,  single-stressor  models  (Eq.  2)  were  run o mitting  

617 

618 

619 

621 

622 

623 

624 

626 

627 

628 

629 

631 

632 

633 

634 

636 

637 

638 

639 

641 

642 

643 

644 

646 

647 

648 

649 

651 

652 

653 

654 

21 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

660

665

670

675

680

685

690

695

656 the  estuary  random e ffect  (αestuary)  and 4 0 o f  the  47  predictor  variables  listed  in T able  4 w ere  
significant  for  over  80%  of  species;  an i mplausible  result  related to th  e  failure  to a ccount  for  
intraclass  correlation.   

In  addition,  random  effects  allow  us  to c haracterize  variability  over  different  scales  (i.e.,  sample,  
estuary,  state,  and p rograms)  (Wikle,  2003a;  Cressie  et  al.,  2009).  For  example,  program-level  
random e ffects  allow  us  to a ssess  the  variability  associated w ith d ifferences  in s ampling  
protocols.  The  MS  program o nly  recorded 2 3 o f  the  57 m odeled s pecies,  resulting  in a   much  
lower  mean p rogram  random  effect  when c ompared to o  ther  state  and  federal  programs  (Fig.  4).  
State  random e ffects  are  also o f  interest,  with T X  having  the  highest  state  random e ffect  and  FL  

having  the  lowest,  though th e  variation a cross  states  was  less  than th e  variation a cross  programs  
(Fig.  4).  Exploring  the  causes  of  state-level  variation c ould b e  a  subject  for  future  research,  as  
this  variation c ould p lausibly  be  related t o e ither  state  fishing  regulations,  biogeography,  or  other  
factors  that  vary  over  a  large  spatial  scale.  The  ability  to d iscern b etween s tate  and p rogram  level  
random e ffects  is  critical,  as  state  random  effects  reflect  actual  differences  in s pecies  prevalence,  
whereas  program r andom e ffects  reflect  sampling e fficiency.  Distinguishing  between s tate  and  
program  random  effects  within t he  model  was  only  possible  because  of  the  two f ederal  interstate  
programs  (EMAP  and N CA),  and t his  is  an i mportant  reason t o c ontinue  these  federal  trawl  
programs  in th e  future.   

4.5 S ummary  and F uture  Directions  

This  study  identifies  watershed a nthropogenic  stressors  that  are  most  strongly  associated w ith  
fish a nd i nvertebrate  species  presence,  and th en u sed t he  modeled s tressor  relationships  to  
develop a n in dex  of  watershed s tress  for  estuaries  across  the  GoM.  The  hierarchical  generalized  
linear  model  used h ere  provides  a  tool  to c ontrol  for  variability  that  occurs  among  programs,  
estuaries,  and s tates,  as  well  as  among  individual  trawl  samples.  A  large  percentage  of  GoM  
species  exhibited n egative  associations  with a nthropogenic  stressors,  but  some  positive  
associations  were  present  as  well.  The  percent  anthropogenic  land c over  (urban,  crop,  and  
pasture)  within a n e stuary’s  drainage  basin w as  consistently  ranked  as  a  leading  predictor  of  

estuary  disturbance.  When d etermining  deviations  from  benchmark  conditions  (Fig.  2),  we  
implicitly  assumed th at  the  statistically  significant  predictor  variables  identified t hrough  
hierarchical  modeling  are,  in f act,  drivers  of  species  presence/absence.  However,  the  empirical  
relationships  developed i n t he  single  and  multi-stressor  models  presented h ere  do n ot  directly  
demonstrate  causal  relationships,  as  it  is  well  known t hat  correlation is   not  necessarily  causation.  
The  results  do,  however,  provide  a  data-supported  line  of  evidence  relevant  to l arge-scale  
estuarine  assessments  and f isheries  management  in th e  GoM.  Past  studies  have  found n egative  
effects  of  nitrogen lo ading,  euthrophication,  and u rbanization o n e stuary  species  (Dauer  et  al.,  
2000,  Diaz  and R osenberg,  2008;  Coll  et  al.,  2010),  but  our  results  are  perhaps  the  most  
compelling  evidence  to d ate  for  widespread p opulation-level  effects  on f ish  and i nvertebrate  

habitats  in G oM  estuaries  by  watershed s tressors,  given t he  comprehensiveness  of  the  datasets  
used a nd th e  spatial  extent  of  the  study.  We  expect  this  study  to  motivate  and f ocus  future  
research e fforts  to u nderstand th e  mechanisms  by  which w atershed s tressors  affect  estuary  
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696 habitats.  Our  findings  may  also b e  useful  to h elp  guide  and p rioritize  watershed r estoration  
activities.  

While  the  current  study  focuses  on s pecies-level  responses,  other  studies  have  focused o n th e  
responses  of  biological  assemblages  (i.e.,  metrics  of  community  composition,  structure,  and  
function)  to r egional  stressor  gradients  (Lewis  et  al.,  2007;  Piazza  and  La  Peyre,  2009).  
Acknowledging  the  potential  advantages  to s pecies-specific  indicators  (see  Introduction),  our  
approach  could b e  extended to c  onsider  the  presence/absence  of  species  functional  groups  that  
share  common h abitat,  life  history,  or  feeding  strategies.  Modeling  functional  groups  may  help  
corroborate  the  patterns  documented h ere  and p rovide  further  insights  into t he  mechanisms  by  

which la ndscape  stressors  act  on b iological  communities.  Further,  modeling  functional  groups  
could f acilitate  comparison o f  results  to p revious  studies  that  have  relied o n c ommunity  metrics  
for  estuarine  biological  assessment  (Engle  et  al.,  1994;  Summers,  2001;  Hughes  et  al.,  2002;  
Jenkins,  2004;  Jordan  et  al.,  2010).   

This  hierarchical  approach c ould b e  extended t o c onsider  species  abundance,  which is   related  
(imperfectly)  to th e  number  of  individuals  of  a  given s pecies  collected i n a   trawl  event.  An  
assessment  of  how  species  abundance  responds  to a nthropogenic  stressors  could a lso b e  
valuable,  particularly  for  species  of  social  or  economic  importance.  Many  of  the  species  found to   
have  sensitivities  to s tressors  in t his  study  are  also ta rgeted b y  the  regional  commercial  fishery  
(including  shrimps,  Gulf  Menhaden,  and B lue  Crab),  and s pecies  that  are  heavily  targeted i n  
recreational  fisheries  (Spotted S eatrout,  Sand  Seatrout  (Cynoscion a renarius),  Silver  Seatrout  
(Cynoscion n othus),  Ground M ullet,  and A tlantic  Croaker  (Micropogonias  undulates);  NMFS,  
2014).  A  natural  extension o f  this  research i s  to f ocus  on t he  responses  of  economically  valuable  
species  in t erms  of  both t heir  probabilities  of  occurrence  and  abundances.  

Finally,  the  hierarchical  modeling  approach d eveloped i n t his  study  could  be  enhanced to   
consider  additional  spatial  and t emporal  variability.  Our  approach d oes  consider  event-level  
variables  like  temperature  and s alinity  that  explain s ome  intra-estuary  variability,  but  which  
cannot  be  directly  related  to s tressors.  Like  other  studies  before  ours  (Jordan e t  al.,  2010),  our  

assessment  is  not  capable  of  estimating  variation i n b iological  condition a t  a  sub-estuary  scale.  If  
trawl  samples  could b e  organized i nto d ifferent  estuarine  subsections  (perhaps  based o n e stuary  
geomorphology),  then s pecies  presence  could b e  related to m  ore  localized s tressors  associated  
with s horeline  development.  Shoreline  hardening  associated w ith s ea  walls  has  been s hown to   
reduce  both  richness  and  abundance  of  species  in n ear  shore  areas  (Peterson a nd  Lowe  2009;  
Gittman e t  al.  2016;  Dethier  et  al.  2016),  but  precise  estuary-level  estimates  of  shoreline  
hardening  were  not  available  for  this  study  (Gittman e t  al.  2015).  Regarding  temporal  variability,  
future  analyses  could e xplore  how  species  presence  changes  over  time,  with a lterations  in  
watershed d evelopment  and b asin f lows  as  potential  predictor  variables.  A  better  understanding  
of  temporal  trends  in e stuary  condition c ould f urther  prioritize  watershed m anagement  and  
restoration a ctivities.  
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